Proudly debugging the system since 1981

Tag: n8n

AI Workflow 2.0

Ho rimesso mano al workflow del post di luglio rivendendo un po il sistema di memoria, che ora registra sia la richiesta che la risposta e utilizzano un solo modello LLM per tutte le operazioni, evitando quindi di caricare scaricare la VRAM più volte per dare seguito ad una sola risposta. La scelta in questo caso è ricaduta su Qwen3 8B, che a volte viene eseguito senza ragionamento ( /no_think ) per i compiti più facili.

E’ stata inoltre introdotta l’integrazione con GMail per accedere alle mail delle ultime 24 ore e rispondere a domande ad essere inerenti. Il workflow non effettua una vera e propria ricerca, ma le scarica tutte, scarta quelle di spam o comunque non utili, sintetizza quelle poco importanti e mantiene inalterate quelle importanti. Il risultato viene aggiunto al prompt dell’utente.

L’integrazione con GMail si attiva solo se la valutazione del prompt dato fà pensare che possa servire accedere alle email recenti.

Vista l’integrazione con GMail il workflow si interrompe immediatamente se il tigger iniziale non viene da me.

Il workflow è scaricabile qua sotto:

Workflow AI, un altro caso d’uso

Credo che sta cosa mi stia sfuggendo di mano. Ho messo insieme un po’ tutto. Riconoscimento vocale, chatbot potenziato con rag, embedding, sintesi della risposta e sintesi vocale in uscita.

Risultato: una assistente personale a portata di messaggistica istantanea con due tipi di memoria, una a breve termine per sostenere efficacemente una conversazione, e una a lungo termine supportata dal RAG. L’embedding si attiva inserendo nel messaggio di input una parola chiave. Il sistema inoltre risponde (anche) a voce se l’interazione iniziale avviene mediante voce o solo scritto se l’interazione e’ stata iniziata in forma testuale.

Lo utilzzero’ davvero? Non lo so, ma potrebbe essere che si … specie per via della memoria a lungo termine, in modo che posso di fatto prendere appunti velocemente e poi poterci accedere in modo altrettanto facile e veloce.

Intanto il trascrittore di vocali, nato per provare, l’ho usato varie volte.

Il tutto, come negli esempi precedenti, e’ selfhosted. Utilizzo:

N8n e un caso d’uso

N8n è un bel progettino per realizzare workflow automatizzati, mettendoci dentro un po di AI.

Come da esperienze precedenti ho provato a farlo funzionare utilizzando il meno possibile servizi su cloud, più che altro per essere consapevole di come funziona ogni passaggio.

Per cui, primo passo installo N8N con una immagine che gira in locale su docker. Niente di difficile. Le istruzioni sul repository sono facili. N8N parte, richiede una mail di registrazione per sbloccare un po’ di funzionalità in modo gratuito. Va bene, anche se non ho verificato bene la differenza tra con e senza registrazione.

A questo punto mi pongo il problema di cosa fargli fare. Ce ne sarebbero mille ma di cose ma provo ad implementare una trascrizione di audio mediante telegram. L’obbiettivo è avere facilmente la trascrizione di messaggio audio provenienti da varie piattaforme di messaggistica, non necessariamente solo telegram.

Continua a leggere

© 2025 b0sh.net

Tema di Anders NorenSu ↑